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               Abstract 

             In this review, we propose a generalization of recursive neural networks that 

operates over recursive structures. We discuss major contributions of researchers 

in applying recursive neural networks to different problems. Due to many 

theoretical implications, recursive neural networks are believed to be powerful 

models. In addition, recursive networks learn high-level representations from 

explicit inputs thus, it is successful in many deep learning tasks where the input 

is a structure. We also tend in this review to connect convolution neural network 

and recurrent neural network to a more general model that stand differently from 

feed-forward neural networks. 

1. Introduction  
 

Regular feed-forward neural networks are composed of two basic operations: affine 

transformation and non-linear application of an activation function to this 

transformation. A hidden layer in neural network transforms the input into a new –

usually compact- representation in a new space h. This is the actual ability of neural 

networks to fit the training data and generalize to all inputs. Neural networks operate 

usually on vectors of real numbers in n dimension.  
 

Other neural networks as convolution ones, are heavily used in computer vision 

applications, operate on a grid or a 2-D vector. A convolution neural network defines 

a receptive field that operates on part of the grid. While CNN takes advantage of 

parameter sharing it does not consider the spatial structure of the grid. This means 

that each receptive field is computed isolated from the other. 
 

A neural network that operates on a structure (a grid, string, graph, tree, sequence, 

etc...) is called a recursive neural network. It takes advantage of parameter sharing as 

in CNN and the spatial structure of the input. For example, given a sentence parse 

tree, the recursive neural network operates on each internal node of the tree 

computing its activations as a function of its children, which may be an internal node 

or a vector representing the word at the leaves. At each node, the neural network uses 

the same set of weights to compute the activations.  
 

Similarly, a recurrent neural network operates on sequences of vectors:  x(1), x(2), x(3), 

…, x(t). This introduces a notion of time in the model, as each vector is located in a 

slot of time in a time space (τ). At each time step, the recurrent neural network 

computes a function of the current input and the activation or the output from the 
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previous time step. In this way, the recurrent neural network exploits the time 

structure of a sequence using parameter sharing concept.  
 

In this review, we introduce recurrent neural network as a type of recursive networks. 

In general, recursive networks operates on structured data and thus find applications 

in many domains as natural language processing, protein sequence prediction, scene 

understanding, and any other domain that include structured data. 
 

2. Parameter sharing  
 

Recursive neural networks process structured data of different forms. For example, 

natural language sentences have different lengths and structures with the same 

meaning. A model operating on sentences should generalize to all types of their 

different forms. Parameter sharing allows recursive neural networks to generalize to 

different forms of data not seen before in training data.  
 

CNN uses the idea of parameter sharing in images. Each CNN feature map takes only 

nxn of an image, which is called a receptive field. The weights connecting the 

receptive field and each neuron in the feature map are called kernel. For each 

receptive field in the input image, we use the same set of weights.  
 

A recurrent neural network that operates on sequences applies the same set of weights 

on each vector x(t) and activations from previous time steps. A feed forward neural 

network would have different weights for each vector x(t).  
 

For a recursive neural network operating on a binary tree, we apply the same set of 

weights on each parent node and its left and right children. In recursive neural 

networks, parameter sharing is only applied to different lengths or size of the data and 

not different structures. For example, a recursive network that works on binary trees 

will be able to generalize to different binary tree heights but will not generalize to 

ternary trees or other trees structures. 

 

3. Formal description  
 

A direct acyclic graph is a pair (V, E), V is the set of vertices or nodes and E is the set 

of edges between them.  For a node, pa[v] is the set of parents of node v and ch[v] is 

the set of children of v. Each node is a vector that encodes information useful for the 

task. A graph may be used to model different kinds of information, an edge between 

two nodes models a logical relationship between two them.  

A recursive neural network is two functions f and g:  

ℎ(𝑣𝑖) = 𝑓 (∑𝑊𝑗. 𝑥𝑗
𝑖

𝑚

𝑗=0

) 

 

𝑜(𝑣𝑖) = 𝑔 (𝑈. ℎ(𝑣𝑖)) 

 

where 𝑊𝑗is the weight matrix connecting node 𝑣𝑖with its m children and 𝑥𝑗
𝑖 is the jth 

child of 𝑣𝑖and 𝑈 is the weight matrix connecting the hidden activation with final 
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output at the node. According to parameter sharing concept, theses weight matrices 

are the same for any node in the graph.  
 

The function f receives as input the activations from ch[v] and multiply each by a 

weight matrix to compute an activation for the parent node. The function g labels 

each node 𝑣𝑖 using its hidden activation. To process a graph G we apply the network 

recursively until we reach the source or root node. Note that a node may not contain 

an input, but an initial input must be represented in the graph as in parse trees of 

sentences, the input is the leaves of the tree. The output function can only be applied 

at the source node labeling the whole graph. 
 

3.1 Recurrent neural network  

 

A recurrent neural network operating over time sliced sequences is a recursive 

neural network:  

ℎ(𝑡) = 𝑓(𝑊ℎ𝑥𝑥(𝑡) +𝑊ℎℎℎ(𝑡−1) + 𝑏) 

In the same way, a recurrent neural network receives both an input from the 

sequence and the hidden activation from the previous time step. There are many 

variations of recurrent neural networks but the main concepts of parameter 

sharing and recursive application of the network over the input structure remain 

the same.  

 

3.2 Deep Recursive neural network 

 

We represented so far recursive neural networks that only contain one hidden 

layer h, but a recursive neural network can also be deep in the representation 

space. In deep feed forward networks every hidden layer is a more abstract 

representation of the input. A deep recursive neural network as proposed by 

(Irsoy and Cardie, 2014) is constructed by stacking multiple layers of recursive 

neural networks. The model was evaluated on the task of fine-grained sentiment 

classification.  

 

A general description of deep recursive neural networks is:  

 

ℎ𝑙(𝑣𝑖) = 𝑓 (𝑉𝑙ℎ𝑙−1(𝑣𝑖) +∑𝑊𝑙
𝑗. 𝑥𝑗

𝑖

𝑚

𝑗=0

) 

 

𝑜(𝑣𝑖) = 𝑔 (𝑈. ℎ𝐿(𝑣𝑖)) 

      

Where 𝑉𝑙is the weight matrix that connects layer 𝑙 − 1 with the next layer 𝑙 and 

the output layer is connected to the final hidden layer𝐿. 
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Figure 1. Deep recursive neural network operating on parse tree of sentences as 

described by (Irsoy & Cardie, 2014) 

 

 

4. Recursive Long short term memory 
 

A long short-term memory network is a recurrent neural network introduced by 

Hochreiter and Schmidhuber (1997) to overcome the vanishing gradients problem. 

Each node in LSTM is replaced by a memory cell. It has been applied to many 

problems as speech recognition, machine translation and handwriting recognition 

(Graves et al., 2009).  
 

Each memory cell receives the activation from the previous time step and the current 

input vector from the sequence. A memory cell is built from simpler nodes that 

operate in a specific order using multiplicative nodes between each two nodes. One 

type of nodes is the gates, which are nodes that receive the input from the current 

sequence and activation from previous time step.   
 

In a recursive LSTM applied on a graph, a memory cell at a node receives input 

vectors or activations from its children. The S-LSTM (Zhu et al., 2015) is a model 

extended to structure as parse trees. The model considers the flow of information 

from the children of a node to the parent thus, it reflects the history of memories of 

children and descent nodes, for example, a memory cell at a certain node can learn 

when to block or allow certain information from the descent nodes. 
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Figure 2. An S-LSTM memory block (Zho et al., 2015), consisting of an input gate, 

, two forget gates and an output gate. ⊗ denotes a multiplicative node between the 

gates. The design choice to have two forget gates is because the model was applied to 

binary trees and can be extended to n-ary trees by adding more forget gates.  

 

An S-LSTM memory block has input gate, forget gates, an output gate, and a cell 

state. An input node receives activation from the left and right children of the node 

(the model is applied to binary trees).  

 

The gates (except the output gate) receive four sources of information the cell states 

of right and left children and the activations of the right and left children. The cell 

state at the current node receives cell states of both left and right children. The output 

gate receives activations of right and left children of the node.  

 

The number of forget gates depend on the number of children of a node to determine 

how much information can pass from each child to the parent node. 
 

5. Backpropagation through structure   
 

The back propagation algorithm is modified to compute gradients for recursive neural 

networks. Usually, a back propagation scheme starts by unfolding the network for a 

single iteration (or epoch). The unfolding of the network is copying each instance of 

the network through the structure with the shared parameters. Now the network is a 

regular feed-forward neural network that has the same topology as the structure of an 

input.  
 

In General, to compute an error term vector for a node in this unfolded network, the 

error of the parent node is propagated down to its children (or subgraphs). The weight 

change is then computed as the sum of all subgraphs in the structure. Understanding 

back propagation is essential to design a variant for recursive neural networks. Many 
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variants of the original algorithm exist (Goller & Kuchler, 1996) as this proposed by 

(Socher et al., 2013) and for recursive LSTM by (Zhu et al., 2015). 

 

6. Applications  

 
Almost recent applications are in applying recursive neural networks in natural 

language processing. In (Socher et al., 2011) they described a recursive network 

(RvNN) in scene understanding. The model described was used to combine image 

segments and labeling them.  Legrand and Collobert leveraged neural networks over 

greedy syntactic parsing (Pinheiro & Collobert, 2014.).  In (Hermann & Blunsom, 

2013) composition was performed with the consideration of linguistic motivations 

specifically from the combinatory categorial grammar (CCG) formalism. 

 

7. Conclusion 

 
Recursive neural networks is a generalization for networks that operates over 

structures using parameter sharing algorithms. Researchers try to simplify and 

constraint the structures which the network operates on, but in general, recursive 

networks are very powerful models. They have been applied successfully to many 

tasks in natural language processing as sentiment analysis and scene understanding.  

Recursive neural networks are expected to gain success in many deep learning tasks 

as it captures information from structured explicit data. Recursive neural networks 

have been applied to protein structure prediction problem. It is expected that large 

computational power delivered by modern GPUs will help tackle this problem using 

recursive networks.   
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